Select Page

Halfway There: After Making Progress in Operational Efficiency, Buildings Must Now Consider Embodied Carbon

Halfway There: After Making Progress in Operational Efficiency, Buildings Must Now Consider Embodied Carbon


The entryway at the Nishi Building used more than 2,000 pieces of reclaimed timber in Canberra, Australia.

The global real estate industry is increasingly committed to reducing carbon emissions, improving operational efficiencies, and incorporating on-site renewable energy. In parallel, municipalities also are showing leadership in adopting new climate mitigation policies to further push the built environment to meet the climate change challenge. But awareness is increasing of another carbon emissions culprit in the built environment: embodied carbon.

Source: ©Architecture 2030, using data from the Global Alliance for Buildings and Construction 2018 Global Status report.

Embodied carbon refers to the emissions associated with manufacturing, transportation, and construction of building materials, as well as building disposal. Embodied carbon in buildings accounts for an estimated 11 percent of total global greenhouse gas emissions. As buildings become more efficient and emit less carbon during their operational lifetime, embodied carbon will become the majority share of building-related carbon emissions.

Reducing embodied carbon in building materials is more complex than the green building industry’s initial campaign to reduce carbon emissions through operational efficiency, both in terms of the implementation and the business case for doing so. With building structural components like concrete and steel  up to 80 percent of a building’s embodied carbon, embodied carbon reductions are primarily made during the design and construction phase of a project.

The ULI Greenprint Center for Building Performance’s recently released primer on Embodied Carbon: Carbon in Building Materials for Real Estate is meant to prepare the real estate market for a low-carbon materials future, making the business case for why real estate should pay attention, highlighting smart steps to reduce embodied carbon, and showcasing peers already addressing the issue. To learn more, download the resource at uli.org/embodiedcarbon.

All these challenges create new
opportunities for real estate developers, architects, contractors, and
engineers to add value to their projects by pursuing embodied carbon reductions.
Staying ahead of regulatory pressures by adopting and adapting early on will
determine success and cost feasibility of low-embodied carbon construction down
the road. The business case for reducing it is already growing:

  • Designs that use fewer materials automatically
    save on the costs of materials. Many low-carbon materials are also
    price-neutral, or in the case of materials like mass timber, provide cost
    savings elsewhere by lowering labor needs and speeding up the construction timeline.
  • Building codes and legislation at both the local
    and national levels are starting to regulate embodied carbon in development. Many
    European countries now mandate preliminary embodied carbon benchmarking for
    construction projects, and laws like Buy Clean California include similar
    mandates for state-funded projects.
  • For those buildings looking to achieve green
    building certifications like Leadership in Energy and Environmental Design (LEED),
    Building Researchment Establishment Environmental Assessment method (BREEAM),
    or the Living Building Challenge, projects that incorporate material reuse,
    low-carbon material use, and embodied carbon calculations are rewarded with
    points toward certification. Voluntary reporting and disclosure initiatives
    like CDP also are beginning to request information on embodied carbon.
  • Cities globally are looking for ways to reach
    aggressive carbon reduction goals and often reward developers for incorporating
    sustainability into design and development decisions. Developers who show
    municipalities and community-based organizations that they are driving
    advancements in deep carbon reductions gain community goodwill by aligning
    their goals with city stakeholders.

Projects worldwide have begun incorporating embodied carbon
considerations into the development process by engineering structures more
efficiently so that fewer materials are needed to construct the supporting
framework for the rest of the building, or designing out excessive materials
use, such as floor and ceiling finishes that are wanted rather than needed. Not
all necessary carbon reductions can be achieved through creative innovation in
design, though, so choosing specific materials wisely is a key component to
reducing embodied carbon in buildings.

An exterior image of the Nishi Building in Canberra, Australia.

A notable example of using low-carbon materials in real estate development is the Nishi Building in Canberra, Australia, which balances sustainability with human-focused design, and provides a mixed-use development, including 233,653 square feet (21,700 sq m) of multifamily residential space and 524,442 square feet (48,700 sq m) of commercial space, office space, a hotel, retail, and a movie theater. The puzzle-like Nishi Building complex is the brain-child of Molonglo Group, a diversified Australian property developer and design firm. The use of sustainable materials was nonnegotiable to Molonglo and mandated early when working with its suppliers and contractors. Examples of these materials included the following:

  • 100 percent Green
    Star
    –rated concrete, an international standard, which uses a higher
    proportion of recycled materials.
  • Sustainably harvested timber from regional blackbutt
    gum trees measuring 131 feet (40 km) in length.
  • Reclaimed timber—the entryway alone used more than
    2,000 pieces of reclaimed timber.
  • Art installations made from 85 percent repurposed construction
    waste, recycled and diverted from landfills.

By outlining
sustainability principles from the outset of a project, Molonglo saw deep
carbon reductions without drastic financial sacrifice. Investment in low-carbon
materials and design that communicates higher value to the tenant, and happy
tenants are also more valuable to a building owner, either through faster
lease-up, lower turnover, or a higher willingness to pay. According to Nikos
Kalogeropoulos, director at Molonglo, “Often, buildings are too focused on
design and forget the human element. People want to live and work in buildings
that are sustainable, promote social cohesion and well-being, and provide
access to amenities and value when extra time and care have been taken. If you
plan for it, the economics works out.”

With the help of capable, experienced construction teams,
developers can often build new properties with much lower embodied carbon in building
materials at no to minimal incremental cost. Fortunately, finding ways to
reduce embodied carbon through design, engineering, and material choices is
becoming increasingly easy to do. Calculator tools for analysis, and low-carbon
materials for supplies, are growing in popularity and presence in the industry.
The University of Washington’s Carbon
Leadership Forum
and Embodied
Carbon Network
, Architecture2030,
materialsCAN,
and WoodWorks all have free and
accessible information and training on embodied carbon in real estate.

The Carbon Leadership Forum will be releasing an open-source Embodied Carbon Calculator for Construction (EC3) to help the greater public benchmark embodied carbon as well as perform cross-comparisons of different materials to understand their carbon intensity. This tool has already received industry attention. Alexandria Real Estate Equities (Alexandria), a real estate investment trust that owns, operates, and develops sustainable and collaborative life science campuses, is one of the first commercial real estate companies involved in the tool’s pilot program . While Alexandria has already set a 30 percent operational carbon pollution reduction goal from 2015 to 2025, the company also recognizes that buildings under construction represent a significant opportunity for additional carbon pollution reduction. Alexandria aims to raise awareness of the issue by demonstrating an early commitment to reducing embodied carbon. Alexandria will use EC3 on development and redevelopment projects going forward, establishing quantitative metrics and measuring carbon reductions based on the latest research.




Source link

About The Author

Leave a reply

Your email address will not be published. Required fields are marked *